Efficient boundary surface reconstruction from heterogeneous volumetric data via tri-prism decomposition
نویسندگان
چکیده
We propose a novel and efficient approach for extracting the boundary surfaces from heterogeneous volumetric data in one pass. Each homogeneous material component is surrounded by a boundary surface, which is composed of piecewise 2-manifold meshes. The key idea is to subdivide each cubical voxel into two tri-prism voxels and to construct the boundary surfaces in a dimension-ascending (DA) way, i.e., from points to lines and then to faces. The extracted boundary surfaces can fully isolate the homogeneous material components, and the information on intersections between boundary surfaces can be explicitly retrieved. The surface reconstruction process can be accomplished efficiently by adopting a case table. The proposed approach is independent of the number of material types employed. Additionally, a new case index encoding approach is proposed to encode all possible cases in a heterogeneous tri-prism voxel that can verify the proposed DA approach in an exhaustive enumeration manner. The experimental results demonstrate that our approach can accurately and efficiently generate a boundary representation of heterogeneous volumetric data. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Surface Reconstruction of freeform Objects Based on Hierarchical Space Decomposition
This paper describes a new and fast method for reconstructing a 3D computerized model from a cloud of points sampled from the object’s surface. The proposed method aggregates very large scale 3D scanning data into a Hierarchical Space Decomposition Model (HSDM), realized by the Octree data structure. This model can represent both the boundary surface and the interior volume of an object. Based ...
متن کاملEfficient surface reconstruction method for distributed CAD
This paper describes a new fast Reverse Engineering (RE) method for creating a 3D computerized model from an unorganized cloud of points. The proposed method is derived directly from the problems and difficulties currently associated with remote design over the Internet, such as accuracy, transmission time and representation at different levels of abstraction. With the proposed method, 3D model...
متن کاملExtracting Boundary Surface of Arbitrary Topology from Volumetric Datasets
This paper presents a novel, powerful reconstruction algorithm that can recover correct shape geometry as well as its unknown topology from arbitrarily complicated volumetric datasets. The algorithm starts from a simple seed model (of genus zero) that can be initialized automatically without user intervention. The deformable behavior of the model is then governed by a locally defined objective ...
متن کاملEfficient Surface Reconstruction from Range Curves
This paper proposes an approach for surface reconstruction of free-form rigid objects from an arbitrary set of intersecting range curves. A strategy for updating the reconstructed surface during data acquisition is described as well. Geometric and color information is accumulated in a volumetric structure in which a vector field is built and updated. Moreover, the information that is needed for...
متن کاملRV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.
We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Graphics
دوره 38 شماره
صفحات -
تاریخ انتشار 2014